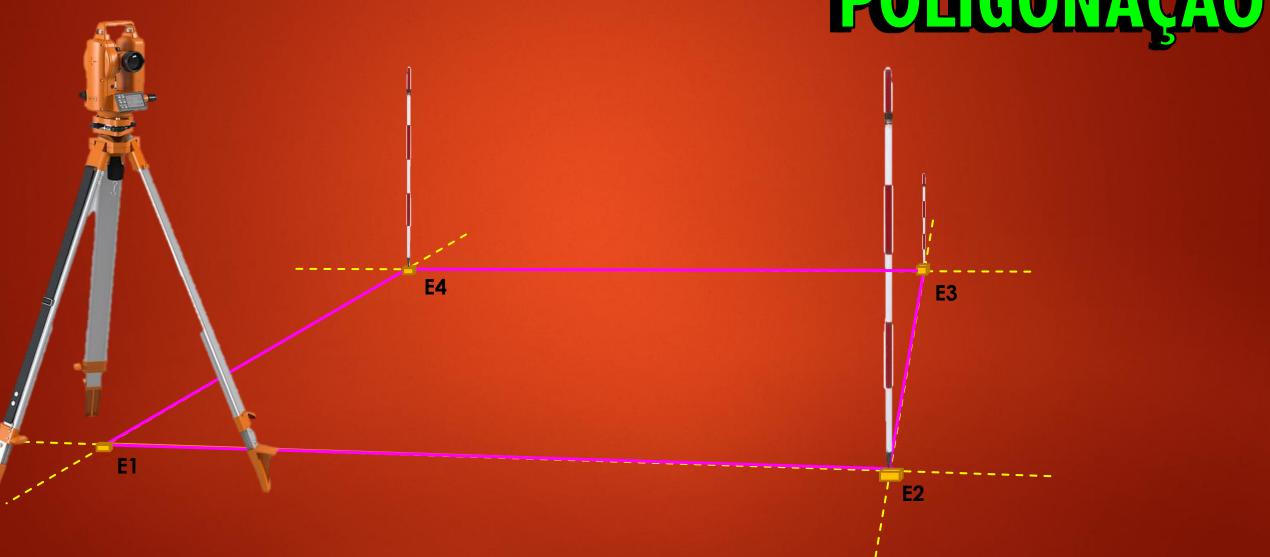
TOPOGRAFIA


Baliza de ré (referência

Planimetria: Caminhamento por ângulos Horários

Augusto Uchôa LABORATÓRIO DE GEOMÁTICA APLICADA DET/CT/UFC

Levantamento Topográfico Planimétrico POLIGONAÇÃO

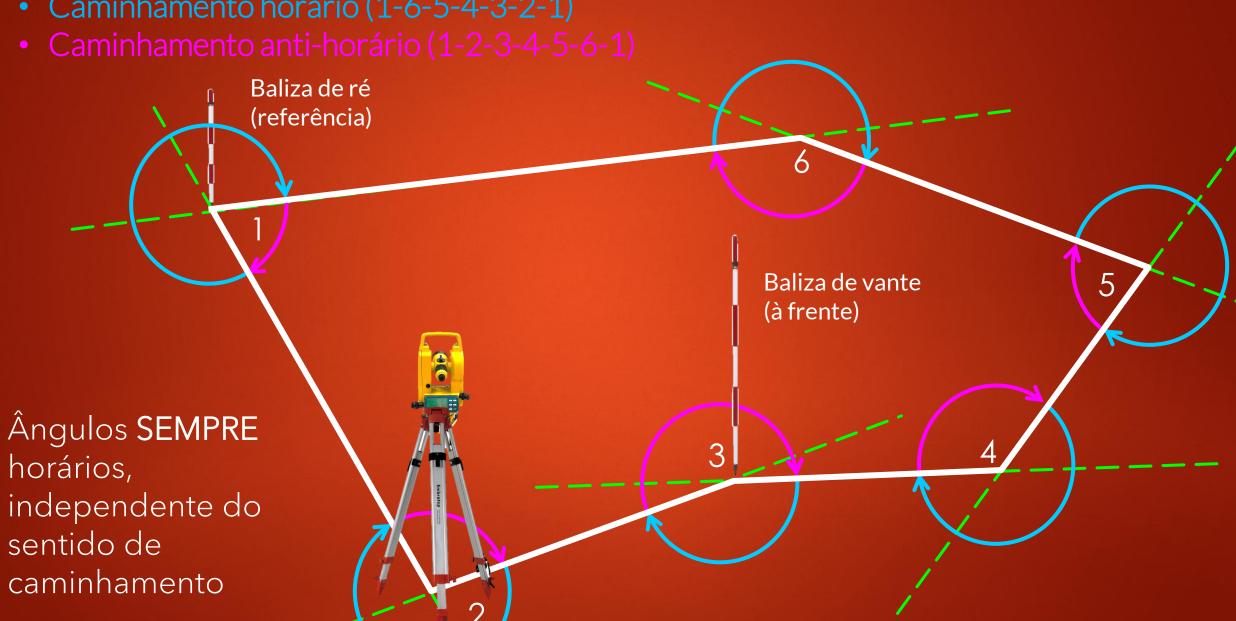
POLGONAL

"É uma série de alinhamentos consecutivos, dos quais a extensão e a direção são medidas no campo"

A partir dos vértices da poligonal são levantados os pontos de detalhes necessários para a completa descrição da área;

Tipos de Poligonais:

- Poligonal Principal (PP)
- Poligonal Secundária (PS)


GEOMETRIA DAS POLIGONAIS

Poligonal Fechada

Caminhamento por Ângulos horários

• Caminhamento horário (1-6-5-4-3-2-1)

Caminhamento por Ângulos de Deflexão (A)

E o "malditos" erros?

Numa poligonal, medem-se ângulos e distâncias, assim, cometem-se tanto erros angulares quanto lineares, motivo pelo qual há de encontrar formas de mensurar e corrigir esses erros se forem admissíveis (toleráveis pela norma), se forem inadmissíveis (excessivos), a poligonal deve ser refeita.

•Nota: O uso do método de Bessel, reduz consideravelmente retorno ao campo, uma vez que existem medidas superabundantes que podem apontar possíveis discrepâncias nas medidas e ainda restarem medições que possam ser usadas para encontrar o valor mais provável das grandezas medidas(ângulos e distâncias)

Euclides pode ajudar!

Na prática, as condições de fechamento quase sempre não são atendidas, existindo uma pequena diferença chamada de erro de fechamento angular e linear. Tolerância → NBR 13133

Erro de fechamento angular

$$\sum ai = (n-2).180^{\circ}$$
$$\sum ae = (n+2).180^{\circ}$$

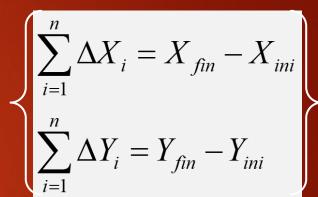
$$\sum ae = (n+2).180^{\circ}$$

$$\sum ah = Az_{fin} - Az_{ini}$$
$$\sum d = \pm 360^{\circ}$$

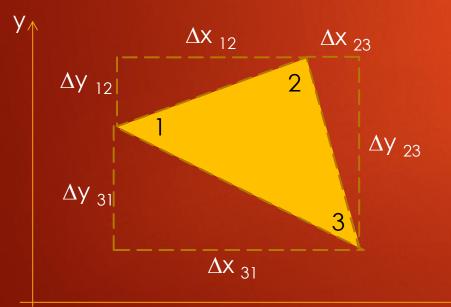
$$\sum d = \pm 360^{\circ}$$


Poligonais **Fechadas**

Poligonais Apoiadas


Erro de fechamento Linear para poligonais

∆x → distância * sen Azimute


Δy → distância * cos Azimute

Poligonais Fechadas

Poligonais Apoiadas

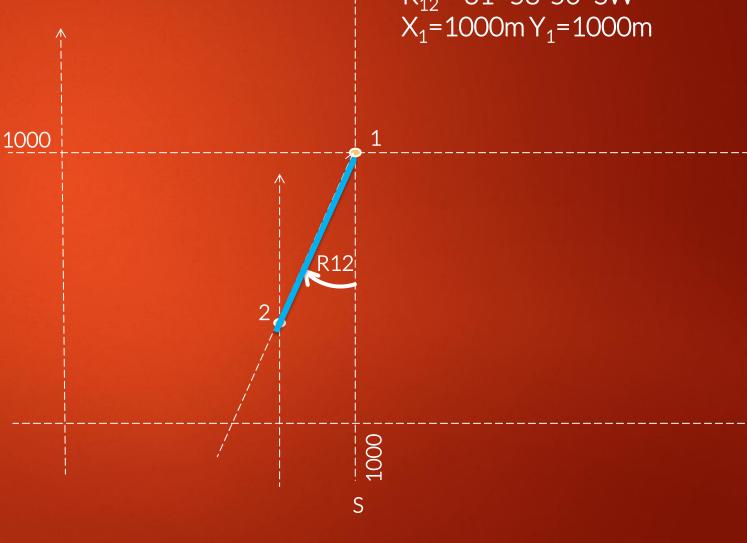
Vamos a nossa 1^a Poligonal!

CONTEXTO:

Suponha que você e sua equipe de campo tenham realizado um Levantamento Topográfico Planimétrico de uma poligonal com 5 vértices, usando o método de caminhamento por ângulos horários, o resultado deste levantamento encontra-se disponível na Caderneta de campo 1. Sabe-se, à priori, que o rumo do alinhamento R_{12} = 31° 58′ 50″ SW. E que as coordenadas X1=1000m Y1=1000m (no plano topográfico qualquer). Afim de desenvolver o projeto de uma edificação no lote levantado, pede-se determinar:

- a) um croquis do levantamento;
- o) o erro angular e a tolerância angular;
- c) caso o erro angular ≤ tolerância angular, deve-se corrigir angularmente a poligonal;
- d) Os Azimutes dos alinhamentos;
- e) o erro linear, a tolerância linear e a precisão relativa da poligonal;
- f) caso o erro linear ≤ tolerância linear, deve-se corrigir linearmente a poligonal;
- as coordenadas finais ajustadas dos vértices 2,3,4 e 5;
- h) a área da poligonal em hectares

Caderneta de Campo 1


Vértice	Ponto Visado	Ângulo horário médio (° ')	Distância horizontal Média (m)			
	5 (ré)		147,048			
1	2 (vante)	112° 00' 15"				
2	1	75° 24' 35"	110,404			
_	3	75 21 55				
3	2	202° 05'05"	72,373			
_	4					
4	3	56° 50'10"	186,593			
•	5		_ = = , = , =			
5	4	93° 40'20"	105,441			
3	1	, 0 10 20	100,111			

- Que tipo de poligonal é? Aberta, apoiada ou fechada?
- Qual método de levantamento foi usado? Ângulos horários ou deflexões?
- 1 hectare equivale a quantos m²?

São previamente conhecidos:

$$R_{12} = 31^{\circ} 58' 50" SW$$

 $X_1 = 1000 \text{m } Y_1 = 1000 \text{m}$

TOLERÂNCIA ANGULAR (NBR 13133/2021)

Tolerância angular $(T\alpha)$: considera a teoria dos erros, onde o erro máximo tolerável é aproximadamente três vezes o erro médio temível, conforme a seguinte equação:

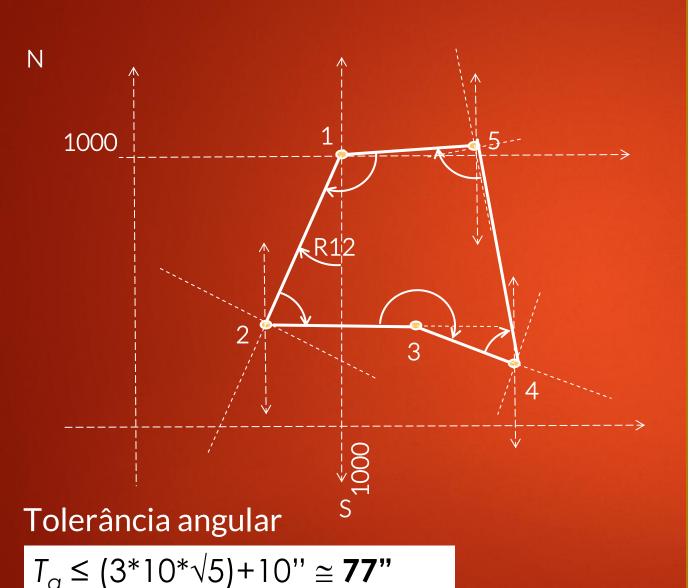
 $T\alpha = (3 \times p \times \sqrt{n}) + 10$ "

Onde:

 n → o número de estações;

segurança;

p → é a precisão nominal para a finalidade do trabalho, sendo adotada para PP ≤ 5" e para PS ≤ 10"
10"é uma constante adotada por medida de


TOLERÂNCIA LINEAR (NBR 13133/2021)

"para atender a todas as finalidades de levantamentos topográficos, a tolerância mínima é de 1:12 000, entretanto, em casos especiais, deve ser adotada tolerância adequada e estabelecida em comum acordo entre o contratante e o contratado"

OU SEJA:
A PRECISÃO
RELATIVA DA
POLIGONAL DEVE
TER ERRADO NA
MÁXIMO 1M A CADA
12 KM (1/12000)

- Que tipo de poligonal é? Aberta, apoiada ou **fechada**?
- Qual método de levantamento foi usado? Ângulos horários ou deflexões?

Condição de Fechamento angular: Σai= 180°.(n-2)→ 540° 00' 00'' Σamedidos= 540° 00' 25''

Erro angular (Ea)= 25"
Tol. Angular(Ta))= 77"
Ta>Ea→ ótimo

Correção angular (Ca) Ca= - (25")/5 → -5"

Angulo horário médio	Correção Angular	Distância horizontal Média (m)
112° 00′ 15″	-5	147,048
75° 24′ 35″	-5	110,404
202° 05'05"	-5	72,373
56° 50′ 10″	-5	186,593
93° 40′20″	-5	105,441
Σah= 540° 00' 25"	-25	Σ d = L= 621,828 m

ÂNGULOS CORRIGIDOS

Vértice	Ponto visado	Ângulo horário médio ° ' "		Ângulo corrigido
1	5 (ré)			112°00′10″
	2 (vante)	112° 00′ 15″	-5	
2	1			75° 24' 30"
	3	75° 24′ 35″	-5	73 21 33
3	2			202° 05'00"
	4	202° 05'05"	-5	202 03 00
4	3			56° 50'05"
,	5	56° 50′10″	-5	30 30 03
5	4			93° 40′15"
	1	93° 40'20"	-5	70 40 13
2	Σ	Σah= 540° 00' 25"	-25	540° 00' 00"

Transporte de Azimutes 1000 Az34 Az23 Az45

Vértice	Ponto visado	Ângulo horário médio ° ' "	CA	Ângulo corrigido	Azimutes
1	5 (ré)			112°00'10"	
–	2 (vante)	112°00′15″	-5	112 00 10	
2	1			75° 24' 30"	
2	3	75° 24' 35"	-5	75 21 00	
3	2			202°05'00"	
J	4	202° 05'05"	-5	202 03 00	
4	3			56° 50'05"	
7	5	56° 50'10"	-5	30 30 03	
5	4			93° 40'15"	
3	1	93° 40'20"	-5	70 40 19	
	Σ	Σah= 540° 00' 25"	-25	540° 00' 00"	

```
R_{12} = 31^{\circ} 58' 50" \text{ SW} \rightarrow \text{Az}_{12} = R_{12} + 180^{\circ} \rightarrow 211^{\circ} 58' 50"
Az_{23} = Az_{12} + Ah_3 \pm 180^{\circ} \rightarrow 107^{\circ} 23' 20"
Az_{34} = Az_{23} + Ah_4 \pm 180^{\circ} \rightarrow 129^{\circ} 28' 20"
Az_{45} = Az_{34} + Ah_5 \pm 180^{\circ} \rightarrow 06^{\circ} 18' 25"
Az_{51} = Az_{45} + Ah_1 \pm 180^{\circ} \rightarrow 279^{\circ} 58' 40"
```

Erro Linear / Precisão relativa

 $\varepsilon_{L} = \sqrt{(\varepsilon_{x})^{2} + (\varepsilon_{y})^{2}}$ Projeções Ângulo Ângulo corrigido Vértice **Azimutes Ponto** Distânci horário médio Ca visado Δx Δy horizont média ε_{x} 5 (ré) -77.887 -124,739 112° 00' 10" 211° 58' 50" $\varepsilon_1 = \sqrt{(-0.021)^2 + (-0.016)^2} \rightarrow 0.026$ m 147,048 112° 00' 15" -5 2 (vante) 105,358 -32,995 2 75° 24' 30" 110,404 107° 23' 20" -5 75° 24' 35" 3 2 72,373 55,866 -46,007 129° 28' 20" 3 202° 05'00" 4 202° 05'05" -5 3 186,593 06° 18' 25" 20,497 185,454 56° 50'05" -5 5 56° 50'10" 4 105,441 103,856 18,271 279° 58' 40" 93° 40'15" 93° 40'20" -5 -25 540° 00' 25" 540° 00' 00" 621,828 $\varepsilon_{\rm x}$ =-0,021 $\epsilon_{v} = -0.016$

 $P_R = 0.026/621.828 \rightarrow 1:23.685 \rightarrow 1/24.000$ ou ainda 1m a cada 24km

Erro Linear / Precisão relativa

Vértice	Ponto		Ca	Ângulo corrigido	Distância			Projeções		Correções		Projeções corrigidas	
	visado	médio ° ' "	Ca	corrigido	horizontal média		Δ_{X}	Δ_{y}	C _x	Су	Δ_{XC}	Δ_{yc}	
1	5 (ré)			112º 00' 10"		211° 58'	-77,887	- 124	0,005	0,004	-77,882	-124,735	
	2 (vante)	112° 00' 15"	-5	112 00 10	147,048	50''	77,007	124, 739	0,000	0,004	77,002	124,700	
2	2 1			75° 24' 30"	110,404	107° 23' 20''	105,358	-32,995	0,004	0,003	105,362	-32,992	
_	3	75° 24' 35"	-5					7					
3	2			202º 05'00"	72,373	129° 28' 20''	55,866	-46,007	0,0025	0,002	55,869	-46,005	
_	4	202° 05'05"	-5			20**	,	, , , , ,	, , , , , ,			-,	
4	3			56° 50'05"	186,593	06° 18' 25"	20,497	185,454	0,006	0,005	20,503	185,459	
-	5	56° 50'10"	-5				=0,		0,000	0,000	_0,000		
5	4			93º 40'15"	105,441	279° 58'	103,856	18,271	0,0035	0,002	-103,852	18,273	
	1	93° 40'20"	-5			40''		. 0,=.	3,000	0,00=		. 6,2.	
	Σ	540° 00' 25"	-25	540° 00' 00''	P=621,828		εx=-0,021	εy=-0,016	0,021	0,016	0,000	0,000	

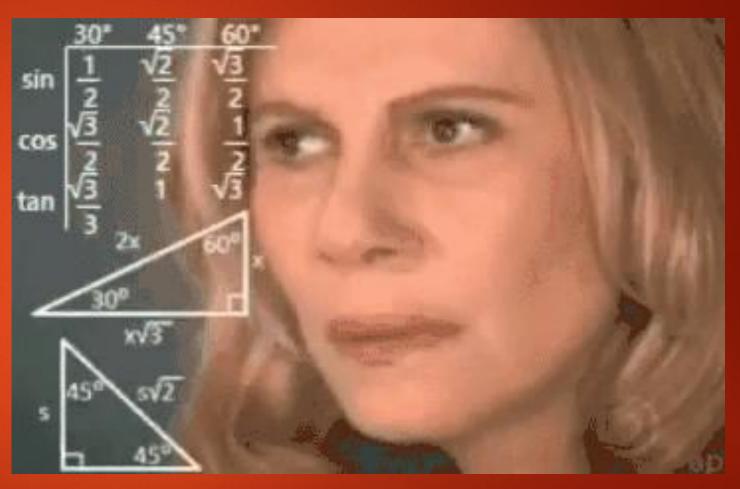
 $\varepsilon_{L} = \sqrt{(\varepsilon_{x})^{2} + (\varepsilon_{y})^{2}}$

 $\mathcal{E}_1 = \sqrt{(-0.021)^2 + (-0.016)^2} \rightarrow 0.026$ m

 $P_R = 0.026/621,828 \rightarrow 1:23.685 \rightarrow 1/24.000 \text{ ou}$

 $C_x = -(\mathcal{E}_x). d/P$

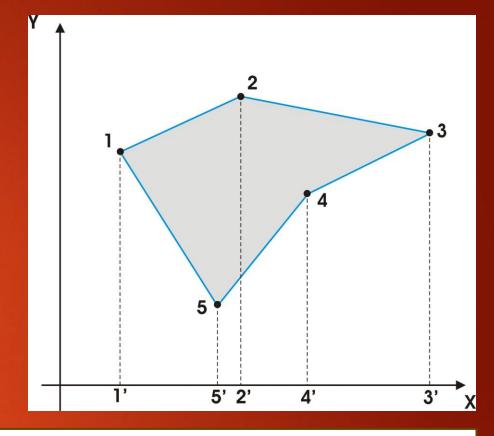
 $C_v = -(E_v). d/P$



Coordenadas Finais ajustadas

Vértice	Ponto	Angulo Ponto horário visado médio	Ca	Ângulo corrigido	Distância horizontal média	Azimutes	Projeções		Correções		Projeções corrigidas		Coordenadas Finais	
	VISAUO		Ca	corrigido			Δ_{X}	Δ_{y}	C _x	Су	Δ_{XC}	Δ_{yc}	X	Υ
	5 (ré)													
1	2 (v an te)	112° 00' 15"	-5	112° 00' 10"	147,048	211° 58' 50"	-77,887	-124,739	0,005	0,004	-77,882	-124,735	1000	1000
2	1			75° 24' 30"	110,404	107° 23' 20"	105,358	-32,995	0,004	0,003	105,362	-32,992	922,118	875,265
	3	75° 24' 35"	-5			20								
3	2			202º 05'00"	72,373	129° 28' 20''	55,866	-46,007	0,0025	0,002	55,869	-46,005	1027,480	842,273
ŭ	4	202° 05'05"	-5			20"	00,000	10,007	0,0020	0,002	00,007	10,000	1027,100	0 12,27 0
4	3			56° 50'05" 93° 40'15"	186,593	186,593 06° 18' 25"	20,497	185,454	4 0,006	0,005	20,503	185,459	1083,349	796,268
	5	56° 50'10"	-5				20,477	100,404	0,000	0,000	20,000	100,407	1000,047	770,200
5	4				105,441	279° 58'	103,856	18,271	0,0035	0,002	-103,852	18,273	1103,852	981,727
3	1	93° 40'20"	-5	00 1 0 10		40"	100,000	10,271	0,0000	0,002	100,002	10,270	1100,002	701,727
	Σ	540° 00'25''	-25	540° 00' 00''	P=621,82 8		εx=-0,021	εy=-0,016	0,021	0,016	0,000	0,000	1000	1000

Avaliação de Áreas


Na topografia quase sempre trabalhamos com pequenas partes da superfície terrestre e a área a ser calculada é sempre a sua projeção no plano topográfico. A pergunta é: Qual método usar?

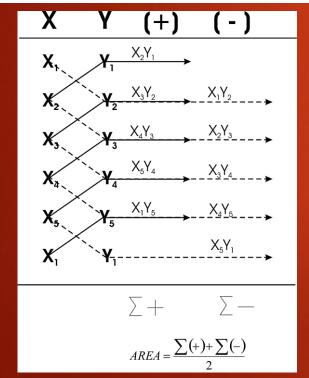
Avaliação de Áreas

Cálculo analítico da área a partir das coordenadas cartesianas dos vértices.

A área do polígono (1-2-3-4-5-1) pode ser calculada por:

$$\hat{A}REA_{(12345)} = \hat{A}REA_{(122'1')} + \hat{A}REA_{(233'2')} - \hat{A}REA_{(155'1')} - \hat{A}REA_{(544'5')} - \hat{A}REA_{(433'4')}$$

Generalizando para um polígono de n lados:


$$AREA = \frac{1}{2}[(y_1 + y_2)(x_2 - x_1) + (y_2 + y_3)(x_3 - x_2) + \dots + (y_{n-1} + y_n)(x_n - x_{n-1}) + (y_n + y_1)(x_1 - x_n)]$$

Avaliação de Áreas

fórmula de Gauss e calcula a área de qualquer polígono a partir das coordenadas cartesianas dos seus "n" vértices

$$\acute{A}REA = \frac{1}{2}[(y_1 + y_2)(x_2 - x_1) + (y_2 + y_3)(x_3 - x_2) + \dots + (y_{n-1} + y_n)(x_n - x_{n-1}) + (y_n + y_1)(x_1 - x_n)]$$

$$2(AREA) = X_2Y_1 - X_1Y_2 + X_3Y_2 - X_2Y_3 + X_4Y_3 - X_3Y_4 + X_5Y_4 - X_4Y_5 + X_1Y_5 - X_5Y_1$$

Dispositivo prático:

dispõe-se as coordenadas dos pontos em duas colunas X e Y como apresentado na figura As coordenadas do primeiro ponto devem ser repetidas no final. Os produtos indicados pelas setas ascendentes (linha contínua) recebem o sinal (+) e os indicados pelas setas descendentes (linha tracejada) recebem o sinal (-). A soma algébrica dos produtos ascendentes e descendentes dividido por 2 fornecerá a área do polígono.

Exemplo numérico

PONTO	X (m)	Y (m)	Xn.Y(n-1)(+)	Xn.Y(n+1)(-)		
1	137.69	206.88	53203.3296			
2	257.17	261.88	116832.524	-36058.2572		
3	446.13	225.5	73086.805	-57991.835		
4	324.11	165.42	38756.2518	-73798.8246		
5	234.29	54.57	7513.7433	-17686.6827		
1	137.69	206.88		-48469.9152		
		Σ	2893	-234005.51		
			(289392.65+ (-234005.51))/2 =			
		ÁREA	$27693.57 \mathrm{m}^2 = 27,694 \mathrm{ha}$			

Atividade Avaliativa

CONTEXTO:

Para fixar o aprendizado, use o mesmo exemplo fornecido em sala de aula para recalcular a poligonal fechada de 5 vértices, sugere-se usar uma planilha excel para realização dos cálculos.

Suponha que você e sua equipe de campo tenham realizado um Levantamento Topográfico Planimétrico de uma poligonal com 5 vértices, usando o método de caminhamento por ângulos horários, o resultado deste levantamento encontra-se disponível na Caderneta de campo 1. Sabe-se, à priori, que o rumo do alinhamento R_{12} = 31° 58′ 50″ SW. E que as coordenadas X1=1000m Y1=1000m (no plano topográfico qualquer). Afim de desenvolver o projeto de uma edificação no lote levantado, pede-se determinar:

- a) um croquis do levantamento;
- b) o erro angular e a tolerância angular;
- c) caso o erro angular ≤ tolerância angular, deve-se corrigir angularmente a poligonal;
- d) Os Azimutes dos alinhamentos;
- e) o erro linear, a tolerância linear e a precisão relativa da poligonal;
- f) caso o erro linear ≤ tolerância linear, deve-se corrigir linearmente a poligonal;
- g) as coordenadas finais ajustadas dos vértices 2,3,4 e 5;
- h) a área da poligonal em hectares

Tema 5: Quando o povo se junta por mudança

'O território é produto das lutas de quem o habita. E quando o povo se junta, o espaço muda"

O que leva o povo à luta?

- Falta de moradia, água, transporte, educação.
- Desigualdade no acesso à cidade.
- Silenciamento de vozes periféricas.

O que nasce da união?

- Ocupações urbanas, comunidades, bairros.
- Redes de solidariedade e resistência.
- Conquistas por direitos: regularização, infraestrutura, serviços.

O que a Topografia tem a ver com isso?

Como a engenharia pode apoiar as lutas do povo por território justo?

- 1. Mapeia o território em disputa.
- 2. Apoia a luta por reconhecimento e justiça.
- 3. Dá visibilidade às vozes que a cidade tentou apagar.